Impact of CYP24A1 overexpression on growth of colorectal tumour xenografts in mice fed with vitamin D and soy
نویسندگان
چکیده
Our previous studies showed that the 1,25-dihydroxyvitamin D (1,25-D3) catabolizing enzyme, 1,25-dihydoxyvitamin D 24 hydroxylase (CYP24A1) was overexpressed in colorectal tumours and its level correlated with increased proliferation. We hypothesised that cells overexpressing CYP24A1 have growth advantage and a diet rich in vitamin D and soy would restore sensitivity to the anti-tumourigenic effects of vitamin D. Soy contains genistein, a natural CYP24A1 inhibitor. To determine causality between CYP24A1 and tumour growth, we established xenografts in male SCID mice with HT29 cells stably overexpressing either GFP-tagged CYP24A1 or GFP. Mice were fed with either high (2500 IU D3/kg) or low vitamin D (100 IU D3/kg) diet in the presence or absence of soy (20% diet). In vitro, cells overexpressing CYP24A1 grew faster than controls. 1,25-D3, the active vitamin D metabolite, reduced cell number only in the presence of the CYP24A1 inhibitor VID400. Regardless of the amount of vitamin D in the diet, xenografts overexpressing CYP24A1 grew faster, were heavier and more aggressive. Soy reduced tumour volume only in the control xenografts, while the tumours overexpressing CYP24A1 were larger in the presence of dietary soy. In conclusion, we demonstrate that CYP24A1 overexpression results in increased aggressiveness and proliferative potential of colorectal tumours. Irrespective of the dietary vitamin D3, dietary soy is able to increase tumour volume when tumours overexpress CYP24A1, suggesting that combination of vitamin D3 and soy could have an anti-tumourigenic effect only if CYP24A1 levels are normal.
منابع مشابه
Increased copy-number and not DNA hypomethylation causes overexpression of the candidate proto-oncogene CYP24A1 in colorectal cancer
In colorectal cancer (CRC) the vitamin D catabolizing enzyme 1,25-dihydroxyvitamin D 24-hydroxylase (CYP24A1) is overexpressed with a potentially significant, positive impact on the catabolism of 1,25-dihydroxyvitamin D3 (1,25-D3 ). However, the underlying mechanism of CYP24A1 overexpression is poorly understood. In the present study, we investigated possible causes including hypomethylation of...
متن کاملEffects of Lactobacillus acidophilus and Bifidobacterium bifidum probiotics on the serum biochemical parameters, and the vitamin D and leptin receptor genes on mice colon cancer
Objective(s): The preclinical reports have shown that specific probiotics like Bifidobacterium bifidum (B. bifidum) and Lactobacillus acidophilus (L. acidophilus) can be applied as the biotherapeutic agents in the inhibition or therapy of colorectal cancer via the modification of gut bacteria. In the previous studies, we have assessed the impact of L. acidophilus and B...
متن کاملEpigenetic regulation of the 1,25-dihydroxyvitamin D3 24-hydroxylase (CYP24A1) in colon cancer cells
Calcitriol is the hormonally active form of vitamin D and has anti-proliferative and pro-apoptotic effects. Calcitriol and its precursor calcidiol (25(OH)D3) are degraded by the 1,25-dihydroxyvitamin D3 24-hydroxylase (CYP24A1). This enzyme is overexpressed in colorectal tumors, however, the mechanisms of this overexpression remain to be elucidated. CYP24A1 mRNA level differs among colorectal c...
متن کاملEffects of Maternal Isocaloric Diet Containing Different Amounts of Soy Oil and Extra Virgin Olive Oil on Weight, Serum Glucose, and Lipid Profile of Female Mice Offspring
Background: Health status of offspring is programmed by maternal diet throughout gestation and lactation. The present study investigates the lasting effects of maternal supplementation with different amounts of soy oil or extra virgin olive oil (EVOO) on weight and biochemical parameters during gestation and lactation of female mice offspring.Methods: Eight weeks old female C57BL/6 mice (n=40) ...
متن کاملCYP24A1 and CYP27B1 polymorphisms modulate vitamin D metabolism in colon cancer cells.
Vitamin D is a well-studied agent for cancer chemoprevention and treatment. Its chief circulating metabolite, 25-hydroxyvitamin D, is converted into the active hormone 1,25-dihydroxyvitamin D (1,25D) by the cytochrome P450 enzyme CYP27B1 in kidney and other tissues. 1,25D is then deactivated by CYP24A1 and ultimately catabolized. Colorectal carcinoma cells express CYP27B1 and CYP24A1 that local...
متن کامل